BGA Underfill for COTS Ruggedization Gustavo Maldonado Joseph Riendeau Eric Suh Jet Propulsion Laboratory, California Institute of Technology NASA Electronic Parts and Packaging Program (NEPP) 2019 Annual NEPP Electronic Technology Workshop (ETW) June 18th, 2019 ## **Underfill History** - Early ceramic flip chip did not have underfill. - Si : CTE ~3ppm/°C Ceramic substrate ~8ppm/°C - Had hermetic seal - Had die size limit - 1987: Hitachi used underfill and demonstrated improvement of temperature cycling life of flip chip. IBM also saw the same effect. - 1991: IBM introduced organic flip chip (17ppm/°C). - Underfill was implemented in this product. - '2000s: Widespread of handheld device - CSP/BGA were underfilled for drop reliability. - Temperature cycling life of BGA and CSP can be also enhanced by underfill, when done right. ### **Current Status of NASA** - Underfill enables flip chip solder bump to survive temp cycling. ex) Class-Y parts. - Plastic BGA parts are becoming reality for flight missions. - Organic class-Y parts 38535 spec development activity - COTS parts and assemblies for small missions - Custom SiP for flagship missions - Underfill can be used for enhancing BGA reliability: - shock, vibe, and thermal cycling reliability. - Underfill can be also used for ruggedizing parts other than BGAs. - Ex) TSOP, CSP, etc # Package Ruggedization Using Underfill - How underfill works: - Redistribute stress on the solder joints to underfill. - Requirement for flip chip due to large CTE mismatch and small standoff height. - Package size and standoff height dependent for BGA. ## **Data from Literature** | | Temp cycle condition | Without underfill | With underfill | Data source | |------|----------------------|---------------------------|---|-----------------------------| | TSOP | 0 to 100°C | 1st failure at 150 cyc | No failure until 3000 cyc | Alan Emerick et al,
1993 | | CSP | -40 to 125°C | N ₆₃ ~ 3300 | 1 or no failure up to 5200 cyc, out of 180 samples. | Jing Liu et al, 2003 | | uBGA | -65 to 125°C | 4 of 10 failed by 800 cyc | No failure up to 4500 cyc | Jong-Min Kim et al,
2003 | | BGA | -40 to 125°C | N ₆₃ ~4690 | N ₆₃ ~5780 | Haiyu Qi et al, 2009 | - Conventional BGA and CSP have good temp cycle performance which can be improved by underfill – Application Specific - uBGA and TSOP temp cycle life can be significantly improved by underfill – Technology Enabler ## **COTS Part Challenges** - Commercial BGAs use lead-free solder - Require higher temperature to assemble, spheres may not melt during reflow when assembled onto a flight board. - Several factors may affect final solder joint composition. - Paste volume, peak reflow temperature, time above liquidus, etc. - Mixed SnPb-PbFree solder joint reliability is not fully understood. - Cracking from mechanical shock. SnPb Sphere w/SnPb Paste Pb-free Sphere w/ SnPb Paste No Melting Pb-free Sphere w/ SnPb Paste Partial Mixing ## **COTS Assembly Challenges** - COTS assemblies are becoming increasingly common in flight missions. - Some of current class-D missions are using COTS assemblies. - COTS assemblies are not built or inspected to NASA requirements. Insufficient and inconsistent workmanship. - Ex) * This assembly passed initial electrical test (with no solder wetting). Developing an adequate ruggedization methodology can bring up the reliability of COTS assemblies. ## **Underfill Properties** ### Key BGA underfill material properties | Underfill | Tg (°C) | CTE (ppm/K) | Modulus | Cure time
(min) | Reworkability | Outgassing | |--------------|---------|-------------|-------------------------|--------------------|---------------|------------| | SUF1589-1 | 120 | 23/80 | Bending / 13 GPa | 80 | No | Pass | | UF3811 | 124 | 61/190 | Storage / 2.45 GPa @25C | 60 | Yes | Pass | | Loctite 3549 | 38 | 55/177 | Storage / 2 GPa @22C | 5 | Yes | Fail | | SMC-386GM | 75 | 60 | Flexural / 2.5 GPa | 30 | Yes | TBD | | Loctite 3563 | 130 | 35/110 | Tensile / 2.8 GPa | 7 | No | TBD | | UF3800 | 69 | 52/188 | Storage / 3.08 GPa @25C | 8 | Yes | TBD | | UF3810 | 102 | 55/171 | Storage / 2.99 GPa @25C | 8 | Yes | TBD | | Loctite 3128 | 45 | 40/130 | Tensile / 3.9 GPa | 20 | No | TBD | #### Desired properties - Low outgassing - Reworkability - Ease of dispense # Things to Consider When Using Underfill at the Board Level - Underfill compromises reworkability. - Underfill has to be applied at the final step, after electrical testing - Underfill's cure temperature has to be compatible with parts and materials already on the assembly. - For underfills with high cure temperature, cure schedules for lower temperatures (80~100°C) need to be developed. - When qualifying assemblies with underfill, electrical testing is required during qual tests. - Solder joint is encapsulated. Visual inspection of solder joint is impossible. - Underfill may transfer CTE mismatch stress between PCB and part to internal flip chip/wirebond. Parts may have to be electrically tested for internal failure. ## Underfill material down selection plan - Outgassing - Cure temperature compatibility with other parts and polymers in assembly. - Check for lower temperature cure viability. - Ex) 150C/7min to 100C/2hours - Check for flexibility in application requirements. - Required equipment - Dispense temperature - Ventilation requirements ## COTS Assembly Ruggedization Demonstration Plan #### I. Path 1 - Procure COTS assemblies with known quality issue. - Ruggedization by strategic underfill application. - Reliability demonstration. #### II. Path 2 - Procure COTS style dummy parts. - Attach parts, mimicking workmanship issues found in COTS boards. (Controlled introduction of workmanship defects.) - Ruggedization by underfill application. - Reliability demonstration. ## **Summary** - Underfill can enhance reliability. - COTS BGA parts & assemblies present new reliability challenges. - Ruggedization of COTS assemblies will be demonstrated.